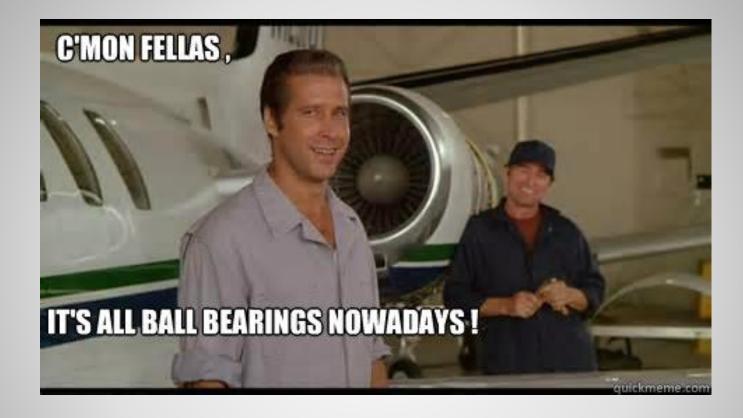
Current and Future Bearing Surfaces in Total Hip Arthroplasty

ASSOCIATES MEDICAL GROUP, INC. Schoa David Fabi, MD Chief of Orthopaedic Surgery, Scripps Mercy Hospital Joint Replacement Specialist

SAN DIEGO


ORTHOPAEDIC

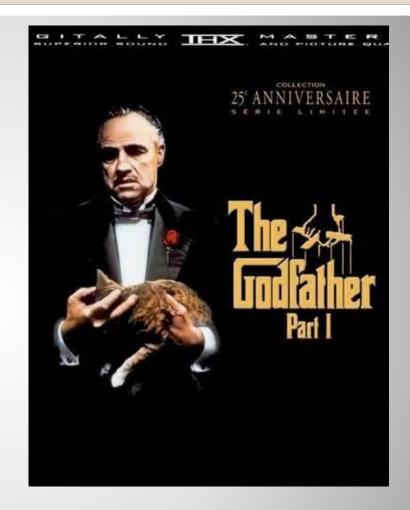
Smith and Nephew Speaker, Instructor Medtronic Speaker

Fletch Wisdom/ Truths

Fletch Wisdom/ Truths

Bearing Surfaces

Tough


- Minimal wear
- Cost effective
- Easy to implant
- Bioinert

Charnley 1950s

- Polytetrafluoroethylen e (PTFE) against stainless steel
- Failed in a few years
- 1962 → Charnley introduced HMWP

Conventional Polyethylene

Charnley 1950s

- Polytetrafluoroethylen e (PTFE) against stainless steel
- Failed in a few years
- 1962 → Charnley introduced HMWP

Conventional Polyethylene

Charnley 1950s

- Polytetrafluoroethylen e (PTFE) against stainless steel
- Failed in a few years
- 1962 → Charnley introduced HMWP

Conventional Polyethylene

Polyethylene

- Long chain hydrocarbon
- Radiation → C-H and C-C bonds can be broken
- Oxygen can bind to free radical → oxidation
- Oxidation can have negative consequences for wear and mech properties

- Formation of C-C bond b/w adjacent molecules
- Two steps
 - Irradiation → free radicals → react to cross link polymer chains
- Heating
 - Reduces free radicals
 - Prevents oxidation
 - Below melting point \rightarrow annealing
 - Above melting point → remelting

- Marked reduction in wear compared to conventional
 - Estok, Harris et al, J Arthroplasty 2007
 - Muratolglu, Rubash, Harris et al J Arthroplasty 2007
 - Mahoney, Crowninshield

- Insensitive to femoral head size in terms of volumetric wear compared to std poly
- More resistance to third body wear and rough femoral heads
 - Ito, Crowninshield, Maloney et al, J Arthroplasty 2010

- Wear reduced by 95%
- Yearly femoral head penetration <6µm
 - Rohrl et al, Acta Orthop 2007

- Decreased mechanical properties
- No Free lunch!

 Inverse relationship b/w radiation dose and crack propagation THERE AINT NO SUCH THING AS A FREE LUNCH

- XL UHMWPE liner fracture
- Multifactorial in nature
 - Assoc'd with heads larger than 32mm
- Tower et al, JBJS 2007
 - Thin poly at the cup rim
 - Vertical cup alignment
 - Reduction in mechanical properties of UHMWPE

Shia DS, Clohisy JS, Schinsky MF, Martell JM, Maloney WJ: THA with highly crosslinked polyehtylene in patients 50 years or younger. CORR 2009

- Avg age 41 years
- f/u mean 4 years
- Post bedding in phase, femoral head penetration not detectable

- Leung SB, Egawa H, Stepniewski A, Beykirch S, Engh CA Jr, Engh CA Sr: Incidence and volume of pelvic osteolysis at early follow-up with highly cross linked and noncross-linked polyethylene. J Arthroplasty 2007
 - CT scans at 5 yrs postop
 - Incidence osteolysis significantly higher w/ conventional poly (28% vs 8%)
 - Lesions significantly smaller

- Bitsch RG, Loidolt T, Heisel C, S Ball, Schmalzried TP: Reduction in osteolysis with use of Marathon cross-linked polyethylene: A concise follow-up, at a minimum of five years, of a previous report. JBJS 2008.
 - Min 5 yr f/u
 - XL UHMWPE lower femoral head penetration rates, volumetric wear, activity adjusted wear
 - No osteolysis in XL UHMWPE
 - 33% (8/24) osteolysis in conventional poly

- Adding antioxidant vitamin E
 - Oxidation resistance
 - Improved fatigue strength
- Simulator studies
 - Low wear
 - High oxidation strength
 - Micheli et al JOA 2012
- Longer term studies needed
- Increased cost

Vitamin E Poly

Metal on Poly

Mayweather Vs Pacquiao

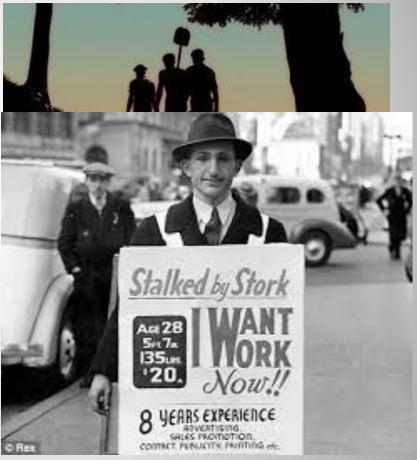
Filipino Pride!!!!

- Wyles, Sierra, Trousdale et al. CORR 2014
- Meta-analysis of RCTs
 - Min of 2 yr followup
 - Avg age <65 yrs
 - Direct meta-analysis → No differences in rev rates
 - 779 THAs
 - Network meta-analysis → 2599 THAs
 - No differences in survival

Ceramic on Poly and Metal on Poly

- Semlitsch et al
 - 20:1 reduction in wear
- Oonoshi et al 1989
 - CoP \rightarrow 0.1mm/yr
 - MoP→ 0.25mm/yr
- Wroblewski et al
 - Head penetration of 0.019 mm/yr at 17 yr followup C on XLPE
 - Demonstrated in wear simulator studies

 Potentially cost effective in younger patients


Ceramic on Poly and Metal on Poly

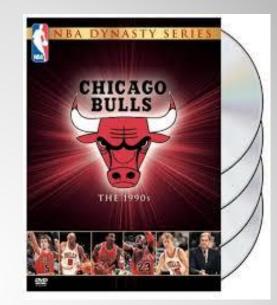
- First used in 1930s
 - Stainless steel components
- 1940s-1950s
 - Cobalt-chrome alloy

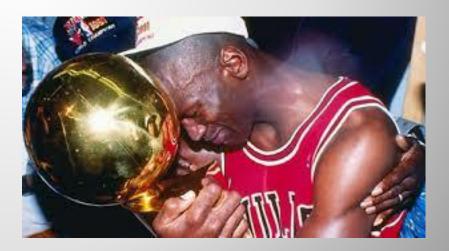
 First used in 1930s Stainless steel components • 1940s-1950s Cobalt-chrome alloy **Metal on Metal**

- Modern MOM THAs introduced in 1990s
- Revival d/t increased stability, decrease wear, hip resurfacing
 - Bozic et al JBJS 2009, Chan et al CORR 1999, Rieker et al 2001
- Improved metallurgy
- Low- wear option
 - Weber et alm CORR 1996

I LVE THE 90'S

- Modern MOM THAs introduced in 1990s
- Revival d/t increased stability, decrease wear, hip resurfacing
 - Bozic et al JBJS 2009, Chan et al CORR 1999, Rieker et al 2001
- Improved metallurgy
- Low- wear option
 - Weber et alm CORR 1996





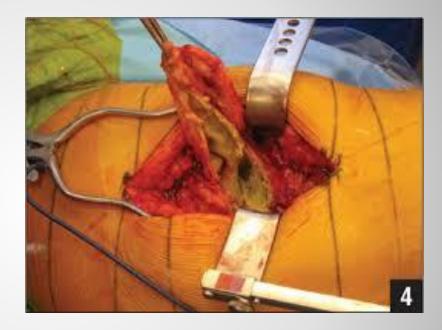
- Modern MOM THAs introduced in 1990s
- Revival d/t increased stability, decrease wear, hip resurfacing
 - Bozic et al JBJS 2009, Chan et al CORR 1999, Rieker et al 2001
- Improved metallurgy
- Low- wear option
 - Weber et alm CORR 1996

I LUYE THE 90

- Modern MOM THAs introduced in 1990s
- Revival d/t increased stability, decrease wear, hip resurfacing
 - Bozic et al JBJS 2009, Chan et al CORR 1999, Rieker et al 2001
- Improved metallurgy
- Low- wear option
 - Weber et alm CORR 1996

- Modern MOM THAs introduced in 1990s
- Revival d/t increased stability, decrease wear, hip resurfacing
 - Bozic et al JBJS 2009, Chan et al CORR 1999, Rieker et al 2001
- Improved metallurgy
- Low- wear option
 - Weber et alm CORR 1996

- "run-in period"
 - First million cycles in vitro
 - First 1-2 years in vivo
 - Then lower steadystate wear
- Chan, Bobyn et al. CORR 1999
 - cup position in vitro


 → anteverted and
 vertical → increased
 wear rate, metal ions

- Unique complications
 - Increased metal ion levels
 - Macdonald SJ, CORR 2004; Clarke et al, JBJS Br 2003
- Systemic issues?
 - Case reports of renal failure and neuro issues
- Crosses placenta
- Malignancy?

Localized effects

- Metal sensitivity
- ALVAL/ALTR
- Metallosis
- Pseudotumors
- Effusion

- Localized effects
 - Metal sensitivity
 - ALVAL/ALTR
 - Metallosis
 - Pseudotumors
 - Effusion

- Rev THAs being performed for unique reasons
- Risk factors:
 - Females
 - Known poor functioning implants
 - Head size
 - Cup position

High Incidence of Revision THAs

- Fabi, Levine, Paprosky, Della Valle, Sporer, Klein, Levine, Hartzband . Orthopedics 2012
- Metal-on-metal total hip arthroplasty: causes and high incidence of early failure.
- Abstract
- A review was performed of 80 patients who underwent revision of a failed metal-on-metal THA for any reason.
- The most common reason for metal-on-metal failure was aseptic acetabular loosening, with a rate of 56.25% (45/80 patients).
- Early failure of metal-on-metal THAs was noted, with 78% of these revisions being performed within 2 years of the index operation and 92.5% within 3 years.
- Mean preoperative Harris Hip Score was 42.35 ± 14.24 and mean postoperative Harris Hip Score was 66.5 ± 23.2 (range, 9.55-95.4), with an average follow-up of 438 ± 492 days (range, 40-2141), or 1.2 years.
- This article proposes an algorithm to aid in diagnosing the etiology of a painful metal-on-metal THA, as well as 2 classification schemes regarding metal-onmetal THA complications to help direct treatment.

Shameless Self Plug

Table 1			
	Fabi-Levine Metal-on-Metal THA Failure Classification		
hpi	Description	Treatment	
t i	Metal sensitivity: stable, well-aligned acatabular component, elevated metal ions, and pain	Revise bearing only to metal-poly or ceramic-poly if modular cup; if monoblock cup, revise cup with metal-poly or ceramic-poly bearing	
2	Malpositioned cup: stable, malaligned acetabular component, elevated metal ions, and pain	Revise cup with metal-poly or ceramic-poly bearing	
	Loose cap	Revise cup with metal-poly or ceramic-poly bearing	
j.	Early failure cups: acetabular components with known high early failure rates	Revise cup with metal-poly or ceramic-poly bearing	
53	fliopsoas impingement ion levels within normal limits, cup reproverted	lliopsoas release or revise cup to optimal position with metal-poly or ceramic-poly bearing	

Fabi- Levine Classification

Table 2

Fabi-Levine Metal-on-Metal THA Soft Tissue Complication Classification

Type	Description	Treatment and Implications
1	Intracapsular offusion, capsule intact	Revise bearing and/or cup if needed, stability less of an issue
0	Extracapsular effusion, capsule affected, abductors intact	Revise bearing and/or cup if needed, stability more of an issue
111	Capsule affected, abductors affected	Revise bearing and/or cup if needed, stability severely compromised; consider constrained liner, other salvage options

Fabi-Levine Classification

IMMORTALITY!!!!

Ceramic on Ceramic

- First seen in 1970s
- Femoral head and/or liner fracture
 - 13.4% in ceramic heads manufactured before 1990
 - Willmann G. CORR 2000
 - Current generation femoral head fx 0.004%

Ceramic on Ceramic

- First seen in 1970s
- Femoral head and/or liner fracture
 - 13.4% in ceramic heads manufactured before 1990
 - Willmann G. CORR 2000
 - Current generation femoral head fx 0.004%

Ceramic on Ceramic

Squeaking

- 0.7-20.9%
- Mai K, Ezzet KA, Copp SN, Walker RH, Colwell CW. CORR 2010
- d/t?
 - Edge-loading, stripe wear, component malposition, altered fluid mechanics

- Ceramic on metal
- Diamond on poly
- Oxinium on poly
- Ox-ox
- Silicone nitride
- Sapphire
- Multiwalled carbon nanotube reinforced poly
- Dual mobility

Newer Surfaces

Ceramic on metal

- No squeaking
- No liner fx
- No metal debris

Isaac et al. JBJS Br 2009. Ceramic-on-metal bearings in total hip replacement: whole blood metal ion levels and analysis of retrieved components.

- This study reports on ceramic-on-metal (CoM) bearings in THA
- The median increase in chromium and cobalt at 12 months was 0.08 microg/1 and 0.22 microg/1, respectively, in CoM bearings.
- Comparable values for metal-on-metal (MoM) were 0.48 microg/1 and 0.32 microg/1.
- The chromium levels were significantly lower in CoM than in MoM bearings (p = 0.02).
- The cobalt levels were lower, but the difference was not significant.

Literature

- Multiwalled carbon nanotube reinforced poly
- Mult concentric nanotubes precisely nested within one another
- Improves mechanical characteristics
- Superior wear behavior compared to UHMWPE

Multiwalled carbon nanotube reinforced poly

OXINIUM° on XLPE

Advanced Bearing System with Oxidized Zirconium

- Oxidized layer of metallic zirconium alloy
- Not a coating but a transformation of surface that is 5-10mm thick
- Much harder and more scratch resistant

OXINIUM° on XLPE • Lewis et al

Advanced Bearing System with Oxidized Zirconium

- Simulator study \rightarrow 45% less wear than smooth CoCr heads
- w/ roughened heads, ox 61% less wear
 - Good et al. JBJS 2003
 - Australian registry \rightarrow excellent survival
 - - No diff b/w CoCr and Ox at 2 yrs
 - Retrieval \rightarrow loss of ox layer with extensive damage to poly
 - Jaffe et al. JOA 2009

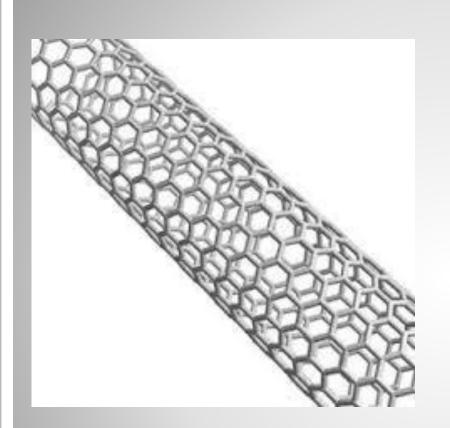
- Superior mechanical properties, biocompatibility and inertness
- In vivo study → 46% of 101 heads against poly revised due to aseptic loosening
 - Hauert et al. Acta Biomater 2012

Diamond

- Retrieved heads → delamination and corrosion
- Simulator study
 - Metal-poly 50-100mm/yr
 - Metal on metal 5-10mm/yr
 - Diamond
 0.001mm/yr
 - Lappalainen et al. J Biomed Mater Res B Appl Biomater 2003

Diamond

- Aluminum oxide in the purest form
- No porosity or grain boundaries
- Low and stable coeff of friction

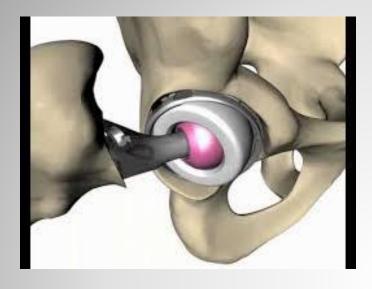


- Inert, low cost
- 5 patients → no complications at 5 years
- Studied in ukraine
 Mamalis et al. J Biol Phys Chem 2006

- Low wear
- Inert
- Less biologically active wear particles
- Lower wear rates than UHMWPE
- Less cytotoxic

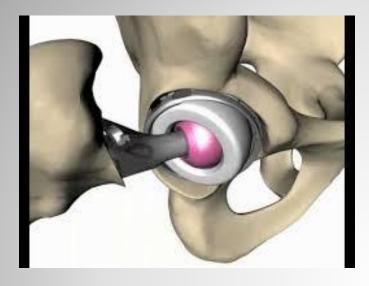
Carbon Based Composite Materials

- Biocompatible
- High wear resistance
- Good osteoconductive properties
- Inhibits biofilm formation and bacterial contamination
 Semi-radiolucent



Silicon Nitride

- Mechanical studies
 - Improved fx toughness and strength over ceramic
 - Bal et al. JOA 2009.
 - Wear products thought to dissolve in fluid → less aseptic loosening
 - Olofsson et al. Biomatter 2012.
- Feb 2011 → first Silicon THA


Silicon Nitride

- Introduced in France in 1976
- Inner constrained femoral head and large poly insert
- Outer unconstrained poly insert and metal cup
 - Vielpeau et al. Int Orthop 2011
 - Guyen et al. CORR 2009

Dual Mobility

- Most motion within inner articulation
- Femoral neck eventually contacts poly insert and drives motion of outer articulation
- Rev THAs for instability

Dual Mobility

Thank You!

